研究生教育 --> 研究生招生 --> 正文
文章内容
【自命题科目】2013年数学专业硕士研究生自命题科目及大纲
发布时间:2013-05-08

 

811概率论与高等代数综合

一、考试目的

本课程主要考核考生对《高等代数》和《概率论》课程的基本理论体系和知识结构的掌握情况及熟练程度,检测考生抽象思维和逻辑推理能力,以及综合运用各知识点解决问题的能力,要求考生概念清楚,对定理理解准确,扎实掌握,还要求有较强的计算能力,对高等代数和概率论的方法能灵活应用。

二、考试内容分两部分: 高等代数和概率论.

    第一部分: 高等代数, 包括九个方面.

第一章:多项式

一元多项式,整除的概念,最大公因式,因式分解定理,重因式,多项式函数,复系数与实系数多项式的因式分解,有理系数多项式;

第二章:行列式

排列, 级行列式, 级行列式的性质,行列式的计算,行列式按一行(列)展开, 克拉默法则,行列式的乘法规则;

第三章:线性方程组

消元法, 维向量空间,线性相关性,矩阵的秩,线性方程组有解的判别定理,线性方程组解的结构,二元高次方程组;

第四章:矩阵

矩阵的概念,矩阵的运算,矩阵乘积的行列式与秩,矩阵的逆,矩阵的分块,初等矩阵,分块乘法的初等变换及应用,广义逆矩阵;

第五章:二次型

二次型的矩阵表示,标准形,惟一性,正定二次型;

第六章:线性空间

集合、映射,线性空间的定义与简单性质,维数、基与坐标,基变换与坐标变换,线性子空间,子空间的交与和,子空间的直和,线性空间的同构;

第七章:线性变换

线性变换的定义,线性变换的运算,线性变换的矩阵,特征值与特征向量,对角矩阵,线性变换的值域与核,不变子空间,若当(Jordan)标准形介绍,最小多项式;

第八章: 矩阵

矩阵, 矩阵在初等变换下的标准形,不变因子, 矩阵相似的条件,初等因子,若当(Jordan)标准形的理论推导;

第九章:欧几里得空间

定义与基本性质,标准正交基,同构,正交变换,子空间,对称矩阵的标准形。

 

 

    第二部分: 概率论,包括以下六个方面.

1、概率论的基本概念

1)   随机试验、随机事件及其运算

2)  概率的定义及概率的性质

3)  概率空间的概念

4)  条件概率和三个重要公式

5)    事件的独立性

6)   贝努利试验和二项概率公式

2、一维随机变量及其分布

1)   随机变量的概念和分布函数

2)   离散型随机变量及其分布

3)   连续型随机变量及其分布

4)   六个常用的分布

5)   随机变量函数的分布

3、多维随机变量及其分布

1) 多维(离散型和连续型)随机变量及其分布

2)  边缘分布、条件分布和随机变量的独立性

3)  二维随机变量(包括二维到二维)函数的分布

4、随机变量的数字特征

1)   一维随机变量的数学期望、方差和矩

2)   数学期望、方差的性质

3)  常用分布的数学期望和方差

4)  二维随机变量的协方差(矩阵)和相关系数及其性质

5)  切比雪夫不等式和柯西-施瓦兹不等式

5、随机变量的特征函数

1)   (一维和多维)随机变量的特征函数及其性质

2)   n维正态(高斯)随机变量的性质

6、大数定律和中心极限定理

1)  马尔科夫大数定律、切比雪夫大数定律、贝努利大数定律和辛钦大数定律

2)  独立同分布的中心极限定理和棣莫弗-拉普拉斯中心极限定理

 

 

三、试卷结构

  1、考试时间为3小时,满分150分;

2、题目类型:卷面满分为150分,高等代数和概率论约各占一半,其中基本题得分约90左右,中偏难或较难题约占60分。主要是填空题、计算题、证明题。

 

601数学分析

一、考试目的

   要求考生比较系统地理解和掌握数学分析的基本概念、基本理论和基本方法。同时,考察考生的逻辑推理能力、计算能力和运用所学知识分析问题和解决问题的能力。

二、考试内容

 1、 实数集与函数

实数的概念,实数的性质,绝对值与不等式,区间与邻域,有界集与无界集,上确界与下确界,确界原理;函数的定义,函数的表示法,分段函数,有界函数,单调函数,奇函数与偶函数,周期函数。

 2、数列极限

极限概念,收敛数列的性质(唯一性,有界性,保号性,单调性),数列极限存在的条件(单调有界准则,迫敛性法则,柯西准则)。

3、函数极限

函数极限的概念,单侧极限的概念,函数极限的性质(唯一性,局部有界性,局部保号性,不等式性,迫敛性),函数极限存在的条件(归结原则(Heine定理),柯西准则),两个重要极限,无穷小量与无穷大量,阶的比较。

 4、函数连续

一点连续的定义,区间连续的定义,单侧连续的定义,间断点及其分类,连续函数的局部性质及运算,闭区间上连续函数的性质(最大最小值性、有界性、介值性、一致连续性),复合函数的连续性,反函数的连续性,初等函数的连续性。

5、导数与微分

导数的定义,单侧导数,导函数,导数的几何意义,导数公式,导数的运算(四则运算),求导法则(反函数的求导法则,复合函数的求导法则,隐函数的求导法则,参数方程的求导法则),微分的定义,微分的运算法则,微分的应用,高阶导数与高阶微分。

6、微分学基本定理

罗尔中值定理,拉格朗日中值定理,柯西中值定理,几种特殊类型的不定式极限与罗比塔法则,泰勒公式。

7、导数的应用

函数的单调性与极值,函数凹凸性与拐点。

8、 实数完备性定理及应用

闭区间套定理,单调有界定理,柯西收敛准则,确界存在定理,聚点定理,有限覆盖定理,

有界性定理的证明,最大小值性定理的证明,介值性定理的证明,一致连续性定理的证明,上、下极限。

9、不定积分

不定积分概念,换元积分法与分部积分法,几类可化为有理函数的积分。

10、定积分

黎曼积分定义,函数可积的必要条件,可积性条件,达布上和与达布下和,可积函数类,可变上限积分,牛顿-莱布尼兹公式,无穷积分收敛与发散的概念,审敛法(柯西准则,比较法,狄利克雷与阿贝尔判别法),瑕积分的收敛与发散的概念,收敛判别法。

11、定积分的应用

平面图形的面积,微元法,已知截面面积函数的立体体积,旋转体的体积平面曲线的弧长与微分,曲率,功,液体压力,引力。

12、数项级数

无穷级数收敛,发散等概念,柯西准则,收敛级数的基本性质,比较原理,达朗贝尔判别法,柯西判别法,积分判别法,交错级数与莱布尼兹判别法,绝对收敛级数与条件收敛级数及其性质,阿贝尔判别法与狄利克雷判别法。

13、函数项级数

一致收敛性及一致收敛判别法(柯西准则,优级数判别法,狄利克雷与阿贝尔判别法),一致收敛的函数列与函数项级数的性质(连续性,可积性,可微性)。

14、 幂级数

阿贝尔定理,收敛半径与收敛区间,幂级数的一致收敛性,幂级数和函数的分析性质,几种常见初等函数的幂级数展开与泰勒定理。

15、傅里叶级数

三角函数与正交函数系, 付里叶级数与傅里叶系数, 以2p 为周期函数的付里叶级数, 收敛定理,以2L为周期的付里叶级数,收敛定理的证明。

16、多元函数极限与连续

平面点集与多元函数的概念,二元函数的极限、累次极限,二元函数的连续性概念,连续函数的局部性质及初等函数连续性。

17、多元函数的微分学

偏导数的概念 ,偏导数的几何意义,偏导数与连续性,连续性与可微性,偏导数与可微性,多元复合函数微分法及求导公式,方向导数与梯度,泰勒定理与极值。

18、  隐函数定理及其应用

隐函数的概念,隐函数的定理,隐函数求导举例,隐函数组存在定理,反函数组与坐标变换,雅可比行列式,平面曲线的切线与法线,空间曲线的切线与法平面,曲面的切平面和法线,条件极值的概念,条件极值的必要条件。

19、重积分

二重积分的概念,可积条件,可积函数,二重积分的性质,二重积分的计算:化二重积分为累次积分,换元法(极坐标变换,一般变换),含参变量的积分,化三重积分为累次积分, 换元法(一般变换,柱面坐标变换,球坐标变换),立体体积,曲面的面积,物体的重心,转动惯量,含参变量非正常积分及其一致收敛性概念,一致收敛的判别法(柯西准则,与函数项级数一致收敛性的关系,一致收敛的M判别法),含参变量非正常积分的分析性质,欧拉积分:格马函数及其性质,贝塔函数及其性质。

20、曲线积分与曲面积分

第一型曲面积分的的概念、性质与计算,第二型曲线积分的概念、性质与计算,两类曲线积分的联系,格林公式,曲线积分与路线的无关性, 全函数,曲面的侧,第二型曲面积分概念及性质与计算,两类曲面积分的关系,高斯公式,斯托克斯公式,空间曲线积分与路径无关性,场的概念,梯度,散度和旋度。

三、试卷结构

考试题型:计算题、证明题